

Modelagem preditiva, Navalha de Occam e Processos Gaussianos para Machine Learning.

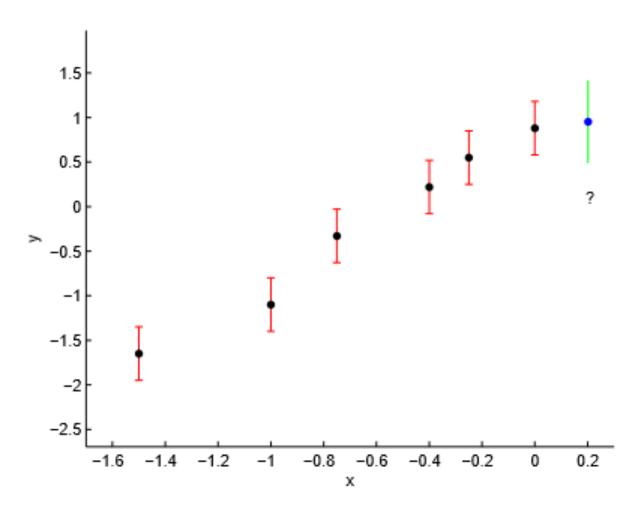
Fabio Ramos

Departamento de Matemática Aplicada

Instituto de Matemática

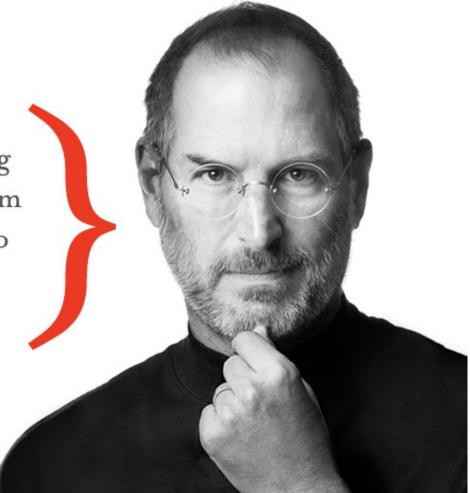
UFRJ

O OBJETIVO

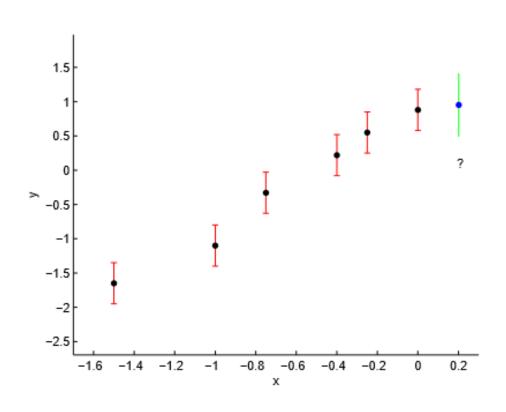


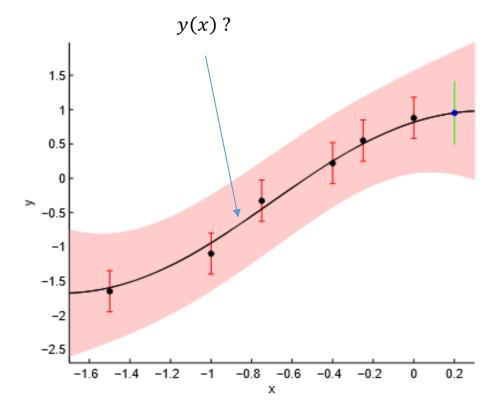
You can't connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future.

-Steve Jobs

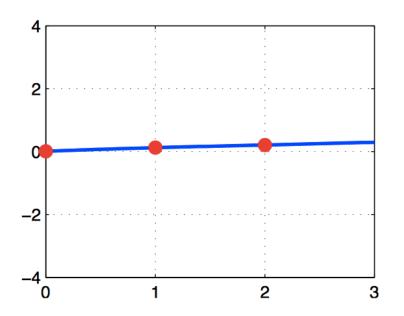


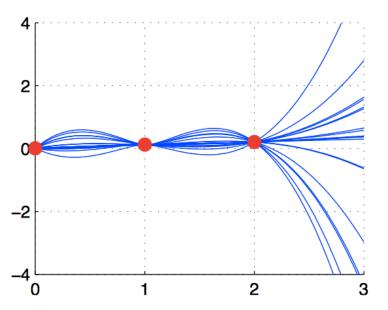
O OBJETIVO



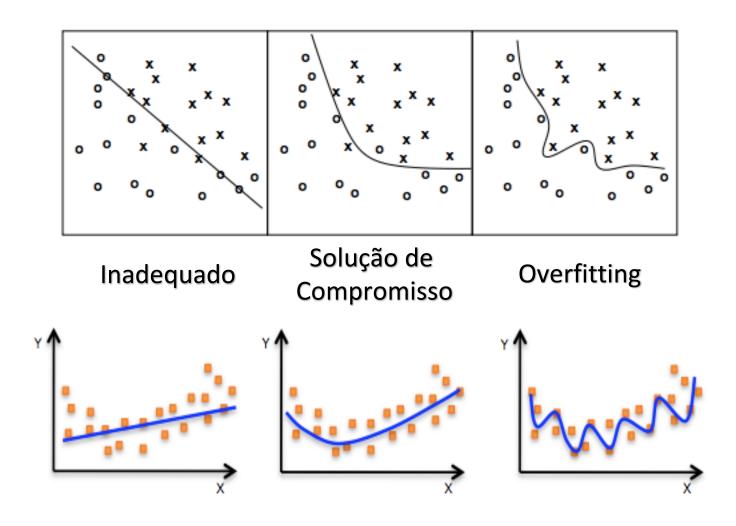


Em qual modelo acreditar?

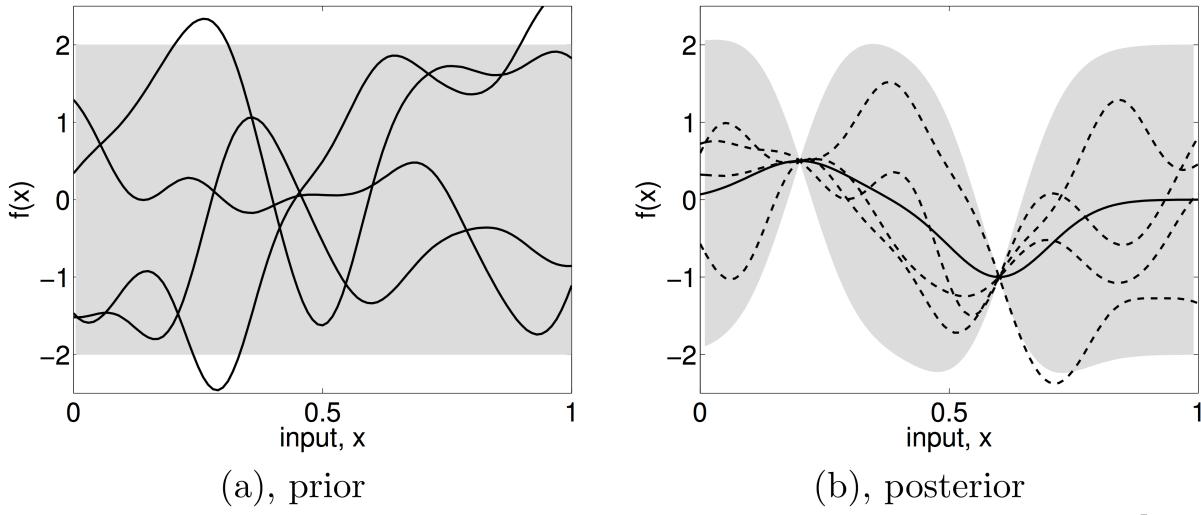




Navalha de Occam - A hipótese mais provável é a mais simples e consistente com os dados

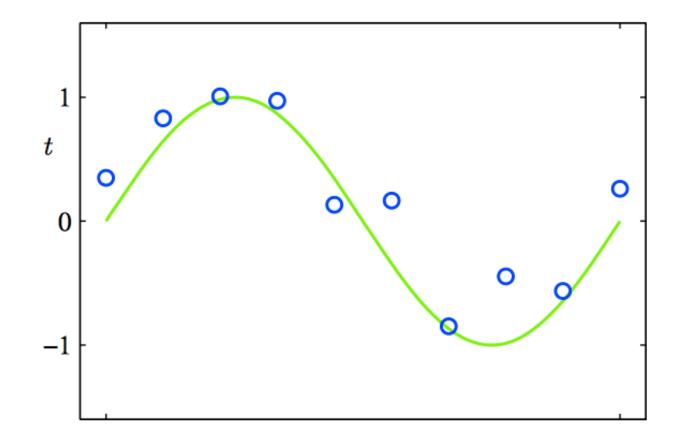


Gaussian Processes - Priors over functions



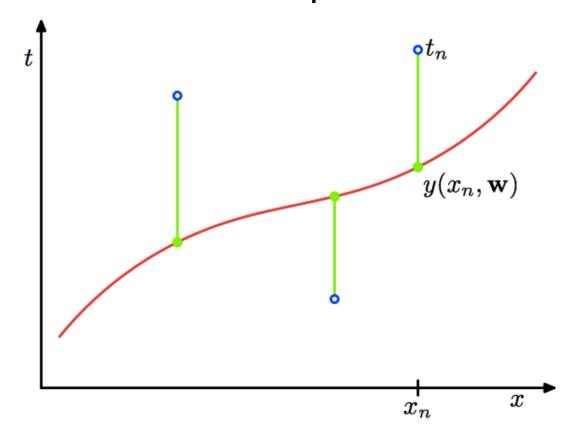
Interpolação polinomial

SINAL (senoidal) + RUÍDO



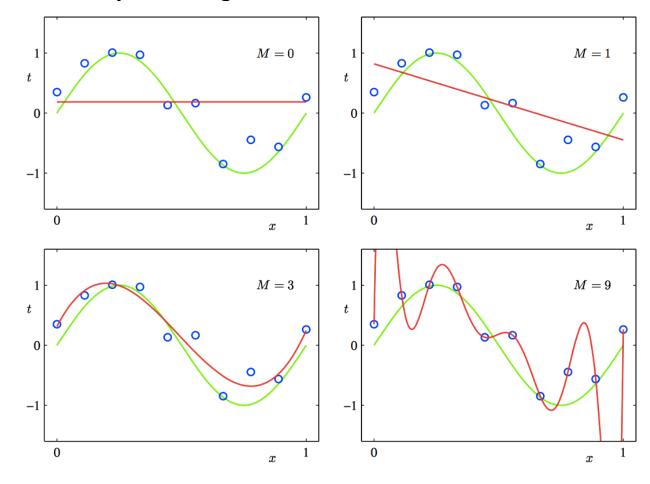
$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{\infty} w_j x^j$$

Ajustando: erro médio quadrático



$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 \xrightarrow{E_{\text{RMS}}} E_{\text{RMS}} = \sqrt{2E(\mathbf{w}^*)/N}$$
 minimizador \mathbf{w}^*

Melhor Interpolação Polinomial

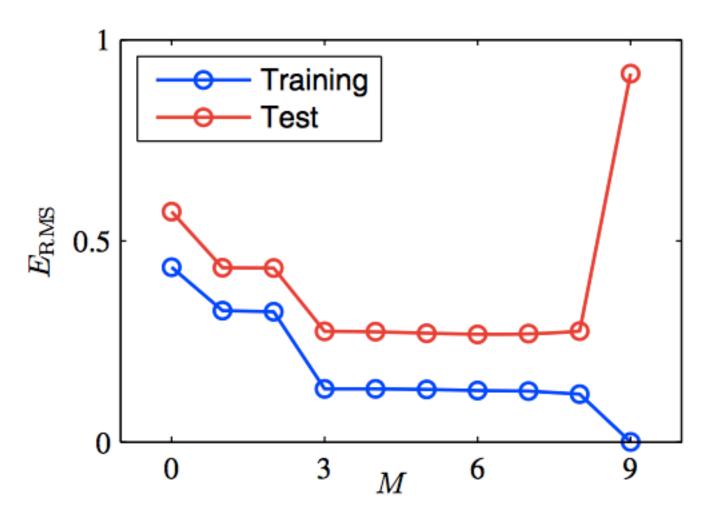


$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{\infty} w_j x^j$$

Coeficientes dos polinômios interpoladores

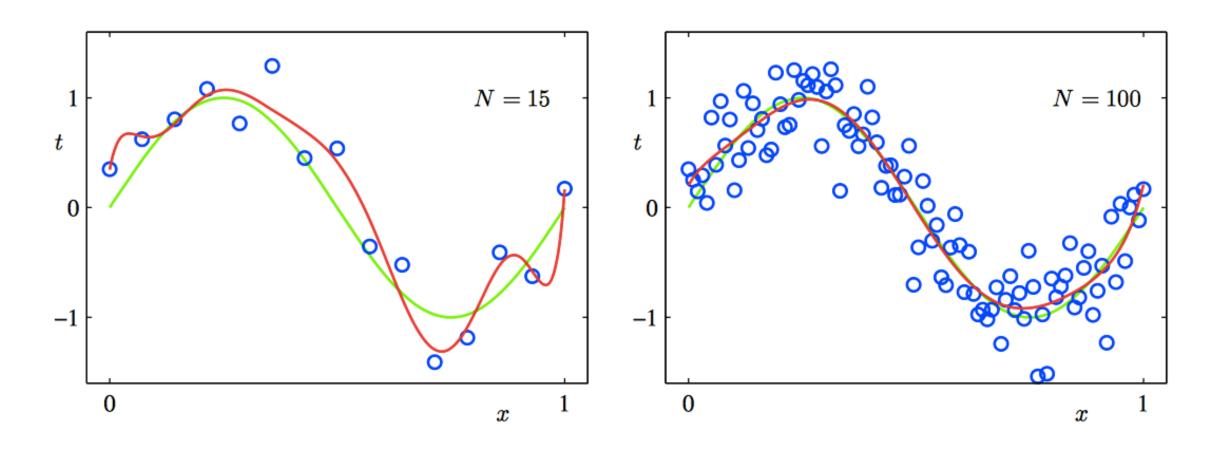
	M=0	M = 1	M = 6	M = 9
$\overline{w_0^\star}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
$w_3^{ar{\star}}$			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
$w_7^{\check{\star}}$				1042400.18
w_8^{\star}				-557682.99
$w_9^{\check{\star}}$				125201.43
0	ı			

Overfitting (Treino é treino, jogo é jogo)



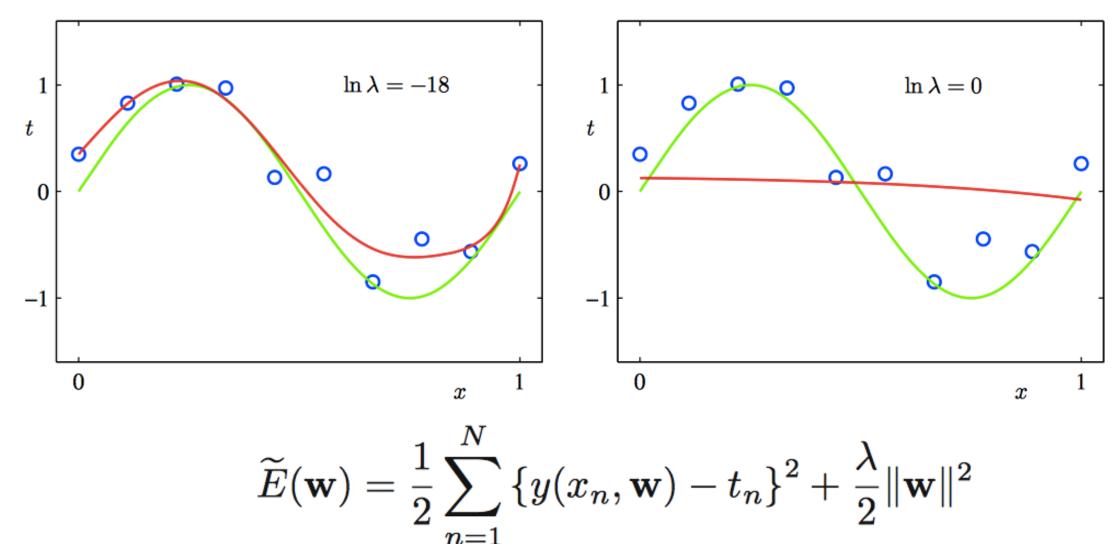
Conjunto de 100 pontos de teste.

Treinando com mais dados



Penalização e Regularização

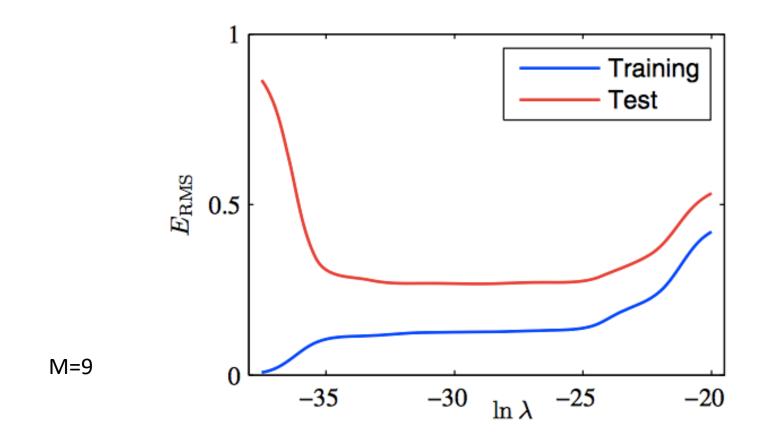
M=9



Coeficientes dos polinômios interpoladores - o efeito regularizador

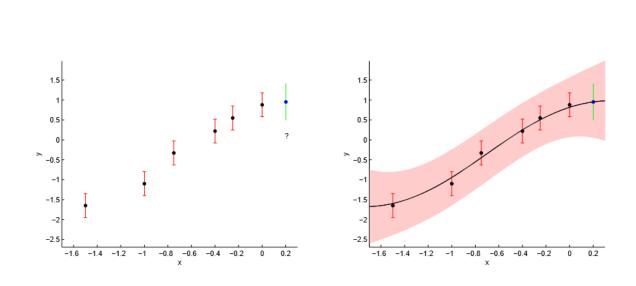
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^\star}$	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
$w_3^{\overset{-}{\star}}$	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^\star	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Domando o Overfitting (Equilibrando Treino e Jogo)



Uma abordagem bayesiana

"Teoria da probabilidade não é nada além de senso comum reduzido ao cálculo" - Laplace



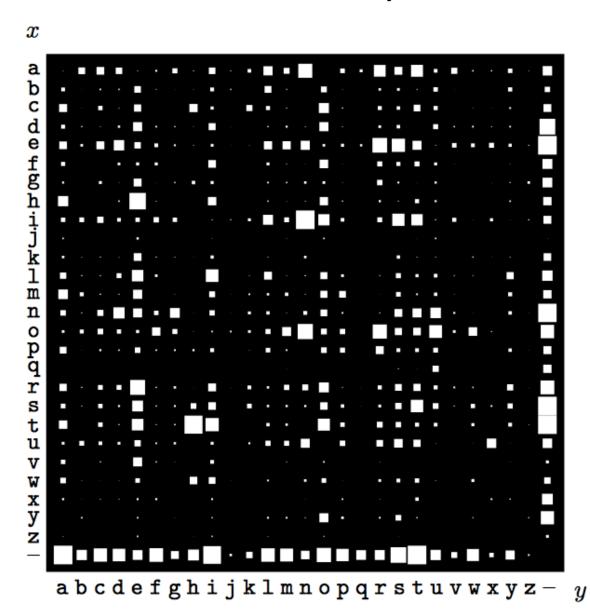
"Senso comum não é nada comum" - Voltaire

Sir David John Cameron MacKay

(22 de Abril 1967 – 14 de Abril 2016)

David J.C. MacKay Information Theory, Inference, and Learning Algorithms

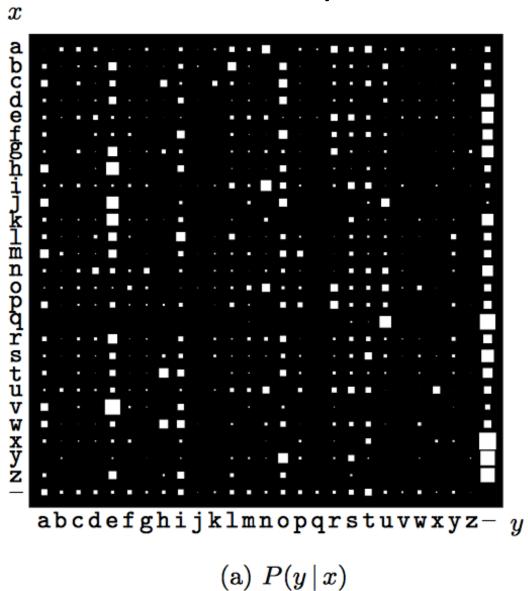
Teorema de Bayes

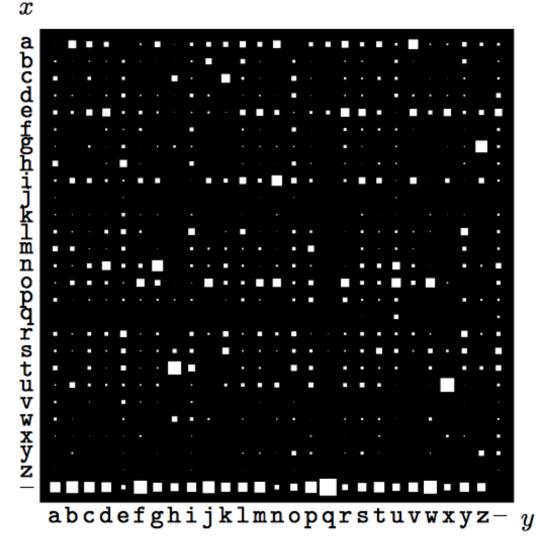


Busca por padrões – FAQ Linux

i	a_i	p_i		
1	a	0.0575	a	П
2	b	0.0128	ъ	
3	С	0.0263	С	
4	d	0.0285	d	
5	е	0.0913	е	П
6	f	0.0173	f	
7	g	0.0133	g	
8	h	0.0313	h	
9	i	0.0599	i	
10	j	0.0006	j	
11	\mathbf{k}	0.0084	k	
12	1	0.0335	1	
13	m	0.0235	m	
14	n	0.0596	n	
15	0	0.0689	0	
16	p	0.0192	P	
17	q	0.0008	q	•
18	r	0.0508	r	
19	s	0.0567	s	
20	t	0.0706	t	
21	u	0.0334	u	
22	v	0.0069	v	•
23	W	0.0119	W	
24	x	0.0073	x	
25	У	0.0164	У	
26	z	0.0007	Z	
27	_	0.1928	_	

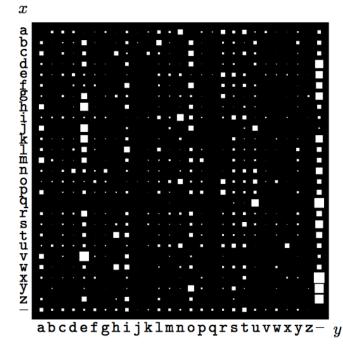
Teorema de Bayes



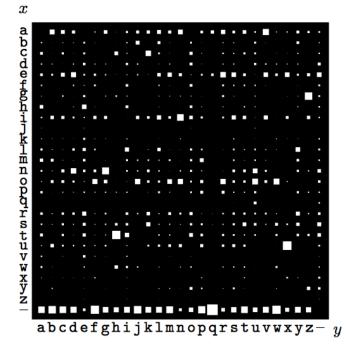


$$P(y \mid x, \mathcal{H}) = \frac{P(x \mid y, \mathcal{H})P(y \mid \mathcal{H})}{P(x \mid \mathcal{H})}$$

$$= \frac{P(x \mid y, \mathcal{H})P(y \mid \mathcal{H})}{\sum_{y'} P(x \mid y', \mathcal{H})P(y' \mid \mathcal{H})}.$$

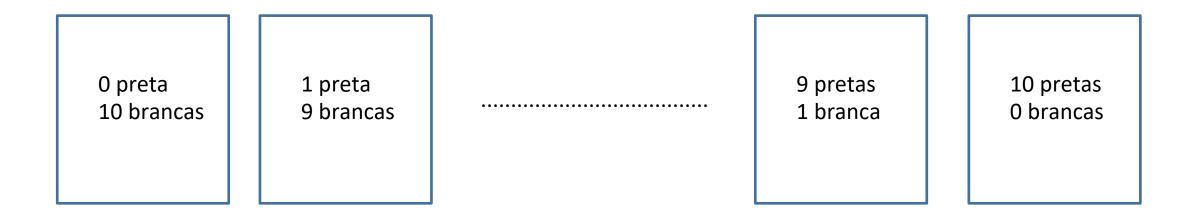


(a) $P(y \mid x)$



(b) $P(x \mid y)$

Previsão Bayesiana



Urna u contém u bolas pretas e 10-u bolas brancas Carlos seleciona uma urna ao acaso e retira N vezes com reposição

N=10 retiradas e $n_b = 3$ pretas foram observadas

Qual a probabilidade que Carlos esteja usando a urna u?

Inferência

0 preta10 brancas

1 preta9 brancas

.....

9 pretas1 branca

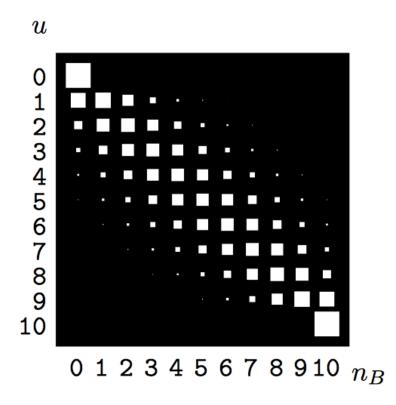
10 pretas0 brancas

N=10 retiradas e $n_b=3$ pretas foram observadas

$$P(u | n_B, N) = \frac{P(u, n_B | N)}{P(n_B | N)}$$

$$= \frac{P(n_B | u, N)P(u)}{P(n_B | N)}$$

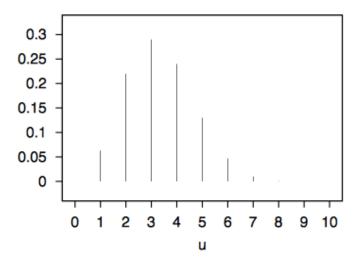
Você não pode fazer inferência sem fazer hipóteses



$$P(u) = \frac{1}{11}$$
 Conhecimento a priori

$$P(n_B | u, N) = \binom{N}{n_B} f_u^{n_B} (1 - f_u)^{N - n_B}$$

$$P(n_B | N) = \sum_{u} P(u, n_B | N) = \sum_{u} P(u)P(n_B | u, N)$$

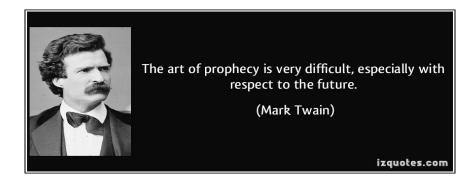


$P(u n_B{=}3,N)$
0
0.063
0.22
0.29
0.24
0.13
0.047
0.0099
0.00086
0.0000096
0

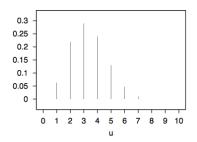
$$P(u | n_B, N) = \frac{P(u)P(n_B | u, N)}{P(n_B | N)}$$

$$= \frac{1}{P(n_B | N)} \frac{1}{11} {N \choose n_B} f_u^{n_B} (1 - f_u)^{N - n_B}$$

Prediction



$$P(\text{ball}_{N+1} \text{ is black } | n_B, N) = \sum_u P(\text{ball}_{N+1} \text{ is black } | u, n_B, N) P(u | n_B, N)$$



u	$P(u n_B{=}3,N)$
0	0
1	0.063
2	0.22
3	0.29
4	0.24
5	0.13
6	0.047
7	0.0099
8	0.00086
9	0.0000096
10	0

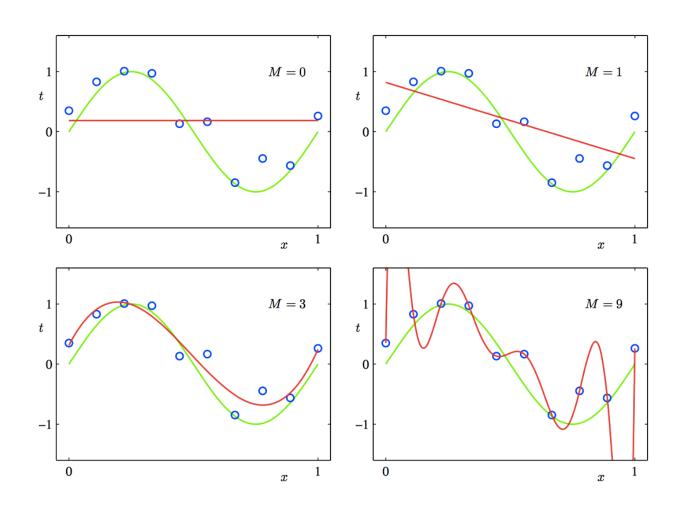
$$P(\text{ball}_{N+1} \text{ is black } | n_B = 3, N = 10) = 0.333$$

Previsão Bayesiana

$$p(y_* | \mathcal{D}) = \int p(y_* | \mathcal{D}, heta) \underline{p(heta | \mathcal{D})} \, d heta$$
 $p(heta | \mathcal{D}) = \frac{p(\mathcal{D}| heta)p(heta)}{\int p(\mathcal{D}| heta')p(heta')\, d heta'} \quad \underline{ ext{Bayes}}$

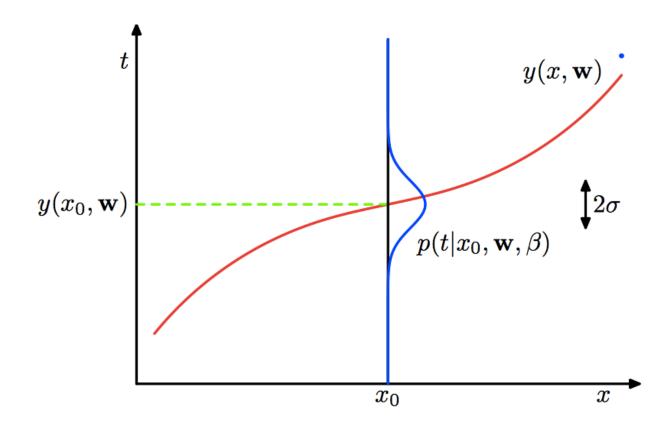
$$p(y_*|\mathcal{D}) = rac{\int p(y_*|\mathcal{D}, heta)p(\mathcal{D}| heta)p(heta)\,d heta}{\int p(\mathcal{D}| heta')p(heta')\,d heta'}$$

Interpolação Polinomial – O Retorno



A abordagem bayesiana

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$
 Modelo de Erro



$$N$$
 input values $\mathbf{x} = (x_1, \dots, x_N)^T$
 \mathbf{t} target values $\mathbf{t} = (t_1, \dots, t_N)^T$

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},eta) = \prod_{n=1}^N \mathcal{N}\left(t_n|y(x_n,\mathbf{w}),eta^{-1}
ight)$$
 Independência dos Erros

$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$
Minimizando

 $\mathbf{w}_{\mathbf{ML}}$

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right).$$

A abordagem bayesiana completa

Priori sobre os coeficientes

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

$$p(\mathbf{w}|\mathbf{x},\mathbf{t},lpha,eta)\propto p(\mathbf{t}|\mathbf{x},\mathbf{w},eta)p(\mathbf{w}|lpha).$$

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}. \qquad \lambda = \frac{\alpha}{\beta}$$

$$\lambda = \frac{\alpha}{\beta}$$

Predição Bayesiana (Tome médias levando em conta toda a incerteza)

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) d\mathbf{w}.$$

$$p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

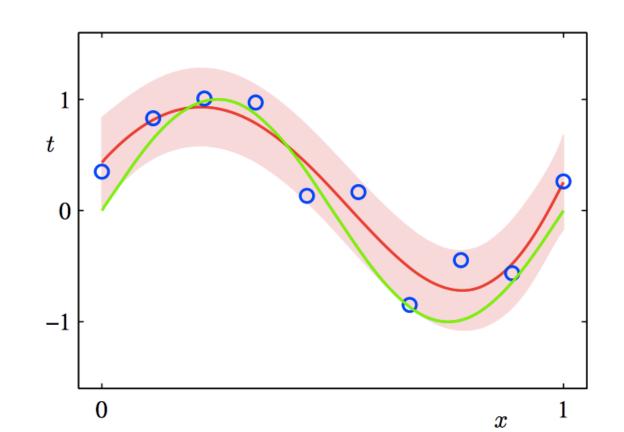
Predição Bayesiana

$$p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

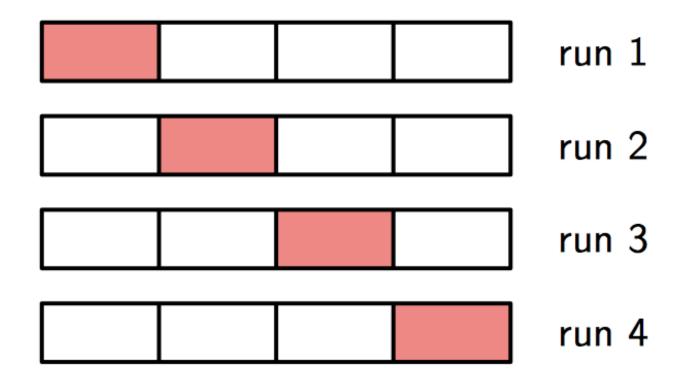
INCERTEZA DA OBSERVAÇÃO + INCERTEZA NOS PARÂMETROS DO MODELO

$$\alpha = 5 \times 10^{-3}$$

$$\beta = 11.1$$
 Como escolher ?



Cross-validation and Model Choice



Posterior, likelihood, prior, evidence

$$P(\boldsymbol{\theta} \mid D, \mathcal{H}) = \frac{P(D \mid \boldsymbol{\theta}, \mathcal{H})P(\boldsymbol{\theta} \mid \mathcal{H})}{P(D \mid \mathcal{H})}$$

$$posterior = \frac{likelihood \times prior}{evidence}.$$

A Navalha de Occam

Quais os dois próximos números?

$$-x^3/11 + 9/11x^2 + 23/11$$
?

"A theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data "— Paul Dirac

A Navalha de Occam

 \mathcal{H}_a – the sequence is an arithmetic progression, 'add n', where n is an integer.

 \mathcal{H}_c – the sequence is generated by a *cubic* function of the form $x \to cx^3 + dx^2 + e$, where c, d and e are fractions.

William of Occam

1287 - 1347

Entia non sunt multiplicanda sine necessitate

Lançamento de moedas – Seleção de Modelos

Observation of a sequence of the letters a and b

The probability, given p_a , that F tosses result in a sequence s that contains $\{F_a, F_b\}$ counts of the two outcomes

Probability of string s

$$P(\mathbf{s} \,|\, p_\mathtt{a}, F, \mathcal{H}_1) = p_\mathtt{a}^{F_\mathtt{a}} (1 - p_\mathtt{a})^{F_\mathtt{b}}.$$

[For example, $P(\mathbf{s} = \mathtt{aaba} \mid p_\mathtt{a}, F = 4, \mathcal{H}_1) = p_\mathtt{a}p_\mathtt{a}(1 - p_\mathtt{a})p_\mathtt{a}$.]

Priori

$$P(p_{\mathtt{a}} \, | \, \mathcal{H}_1) = 1, \quad p_{\mathtt{a}} \in [0, 1]$$

and $p_b \equiv 1 - p_a$.

Probabilidade posteriori de p_a

$$P(p_{\mathtt{a}} \, | \, \mathbf{s}, F, \mathcal{H}_1) \;\; = \;\; rac{p_{\mathtt{a}}^{F_{\mathtt{a}}} (1 - p_{\mathtt{a}})^{F_{\mathtt{b}}}}{P(\mathbf{s} \, | \, F, \mathcal{H}_1)}$$

$$\frac{\text{Constante}}{\text{Normalizadora}} P(\mathbf{s} \mid F, \mathcal{H}_1) = \int_0^1 \mathrm{d}p_\mathbf{a} \, p_\mathbf{a}^{F_\mathbf{a}} (1-p_\mathbf{a})^{F_\mathbf{b}} = \frac{\Gamma(F_\mathbf{a}+1)\Gamma(F_\mathbf{b}+1)}{\Gamma(F_\mathbf{a}+F_\mathbf{b}+2)} = \frac{F_\mathbf{a}! F_\mathbf{b}!}{(F_\mathbf{a}+F_\mathbf{b}+1)!} = \frac{F_\mathbf{a}! F_\mathbf{b}!}{(F_\mathbf{a}+F_\mathbf{b}+1)!}$$
= Evidência

Do ajuste para a previsão

$$P(\mathbf{a} \,|\, \mathbf{s}, F) = \int \mathrm{d}p_{\mathbf{a}} \, P(\mathbf{a} \,|\, p_{\mathbf{a}}) P(p_{\mathbf{a}} \,|\, \mathbf{s}, F)$$

$$\begin{split} P(\mathbf{a} \,|\, \mathbf{s}, F) &= \int \mathrm{d}p_{\mathbf{a}} \, p_{\mathbf{a}} \frac{p_{\mathbf{a}}^{F_{\mathbf{a}}} (1 - p_{\mathbf{a}})^{F_{\mathbf{b}}}}{P(\mathbf{s} \,|\, F)} \\ &= \int \mathrm{d}p_{\mathbf{a}} \, \frac{p_{\mathbf{a}}^{F_{\mathbf{a}}+1} (1 - p_{\mathbf{a}})^{F_{\mathbf{b}}}}{P(\mathbf{s} \,|\, F)} \\ &= \left[\frac{(F_{\mathbf{a}}+1)! \, F_{\mathbf{b}}!}{(F_{\mathbf{a}}+F_{\mathbf{b}}+2)!} \right] / \left[\frac{F_{\mathbf{a}}! \, F_{\mathbf{b}}!}{(F_{\mathbf{a}}+F_{\mathbf{b}}+1)!} \right] \, = \, \frac{F_{\mathbf{a}}+1}{F_{\mathbf{a}}+F_{\mathbf{b}}+2} \end{split}$$

REGRA DE LAPLACE

Seleção de modelos

Outro cientista introduz um outro modelo:

Hipothesis H_0 : probability of a is $p_0 = \frac{1}{6}$

$$P(\mathcal{H}_1 | \mathbf{s}, F) = \frac{P(\mathbf{s} | F, \mathcal{H}_1)P(\mathcal{H}_1)}{P(\mathbf{s} | F)}.$$

Como selecionar o modelo?

VS.

$$P(\mathcal{H}_0 | \mathbf{s}, F) = \frac{P(\mathbf{s} | F, \mathcal{H}_0)P(\mathcal{H}_0)}{P(\mathbf{s} | F)}$$

$$P(\mathbf{s} \mid F) = P(\mathbf{s} \mid F, \mathcal{H}_1)P(\mathcal{H}_1) + P(\mathbf{s} \mid F, \mathcal{H}_0)P(\mathcal{H}_0)$$

Seleção de modelos

Defining p_0 to be 1/6, we have

$$P(\mathbf{s} \mid F, \mathcal{H}_0) = p_0^{F_\mathtt{a}} (1-p_0)^{F_\mathtt{b}}$$
 = Evidência

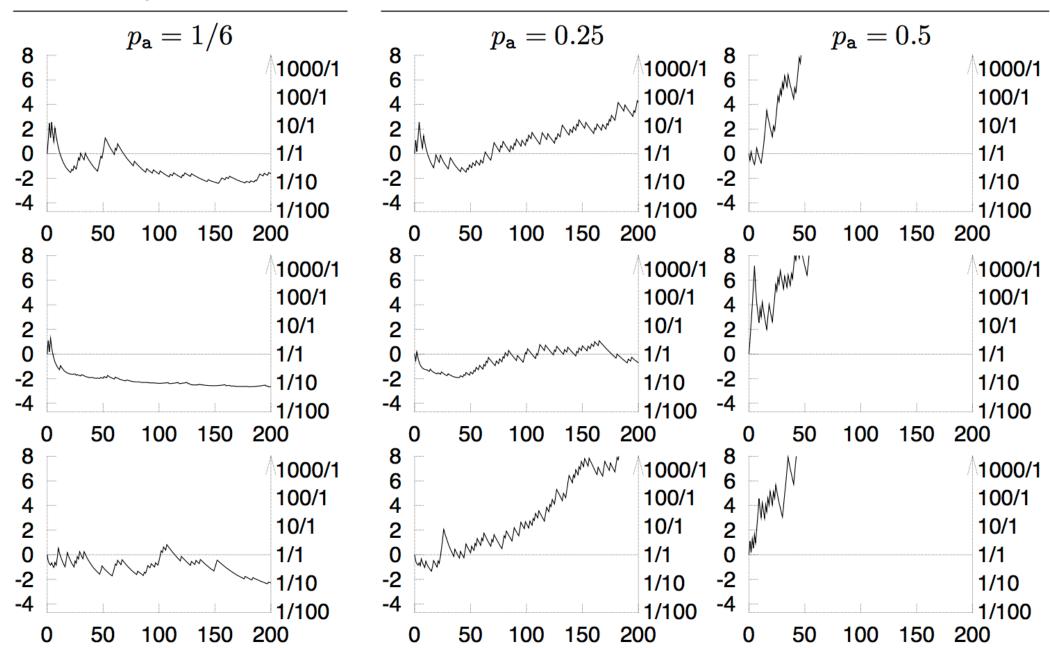
Thus the posterior probability ratio of model \mathcal{H}_1 to model \mathcal{H}_0 is

$$\frac{P(\mathcal{H}_{1} | \mathbf{s}, F)}{P(\mathcal{H}_{0} | \mathbf{s}, F)} = \frac{P(\mathbf{s} | F, \mathcal{H}_{1})P(\mathcal{H}_{1})}{P(\mathbf{s} | F, \mathcal{H}_{0})P(\mathcal{H}_{0})} \\
= \frac{F_{\mathbf{a}}! F_{\mathbf{b}}!}{(F_{\mathbf{a}} + F_{\mathbf{b}} + 1)!} / p_{0}^{F_{\mathbf{a}}} (1 - p_{0})^{F_{\mathbf{b}}}.$$

How model comparison works: The evidence for a model is usually the normalizing constant of an earlier Bayesian inference.

Comparando modelos

\overline{F}	Data (F_a, F_b)	$\frac{P(\mathcal{H}_1 \mathbf{s}, F)}{P(\mathcal{H}_0 \mathbf{s}, F)}$	
6	(5,1)	222.2	
6	(3,3)	2.67	
6	(2,4)	0.71	= 1/1.4
6	(1,5)	0.356	= 1/2.8
6	(0,6)	0.427	= 1/2.3
20	(10, 10)	96.5	
20	(3, 17)	0.2	= 1/5
20	(0, 20)	1.83	-



Navalha de Occam – Ajuste de modelo

1 – First level of inference

$$P(\mathbf{w}|D, \mathcal{H}_i) = \frac{P(D|\mathbf{w}, \mathcal{H}_i)P(\mathbf{w}|\mathcal{H}_i)}{P(D|\mathcal{H}_i)}$$

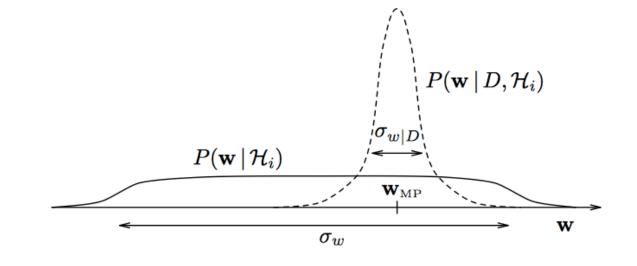
$$Posterior = \frac{Likelihood \times Prior}{Evidence}$$

Navalha de Occam – Comparação de modelos

2 – Second level of inference

$$P(\mathcal{H}_i | D) \propto P(D | \mathcal{H}_i) P(\mathcal{H}_i)$$

$$P(D \mid \mathcal{H}_i) = \int P(D \mid \mathbf{w}, \mathcal{H}_i) P(\mathbf{w} \mid \mathcal{H}_i) d\mathbf{w}$$



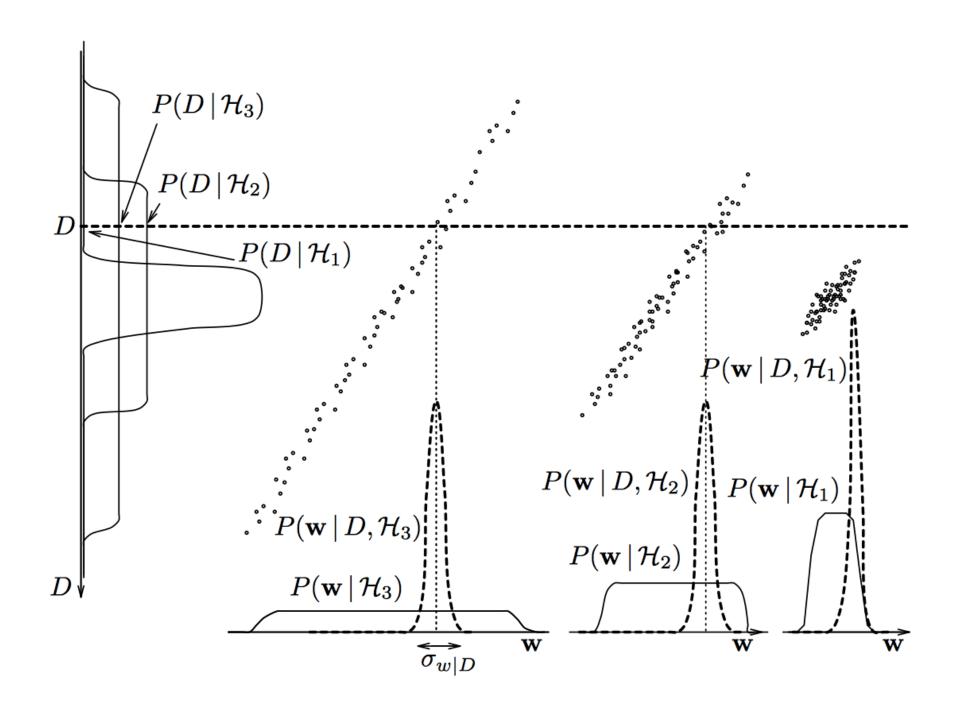
For many problems the posterior $P(\mathbf{w} | D, \mathcal{H}_i) \propto P(D | \mathbf{w}, \mathcal{H}_i) P(\mathbf{w} | \mathcal{H}_i)$ has a strong peak at the most probable parameters \mathbf{w}_{MP}

$$P(D | \mathcal{H}_i) \simeq \underbrace{P(D | \mathbf{w}_{\text{MP}}, \mathcal{H}_i)}_{P(\mathbf{w}_{\text{MP}}, \mathcal{H}_i)} \times \underbrace{P(\mathbf{w}_{\text{MP}} | \mathcal{H}_i) \sigma_{w|D}}_{P(\mathbf{w}_{\text{MP}}, \mathcal{H}_i)}$$

Evidence \simeq Best fit likelihood \times Occam factor

 $ext{Occam factor} = rac{\sigma_{w|D}}{\sigma_{w}}$

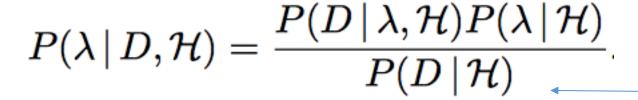
 $P(\mathbf{w}_{\mathrm{MP}} \mid \mathcal{H}_i) = 1/\sigma_w$



Probability theory reaches parts that ad hoc methods cannot reach

$$P(\mathbf{t} \mid D, I) = \sum_{\mathcal{U}} P(\mathbf{t} \mid D, \mathcal{H}, I) P(\mathcal{H} \mid D, I)$$
. Previsão Bayesiana

$$P(\mathcal{H} \,|\, D, I) = \frac{P(D \,|\, \mathcal{H}, I) P(\mathcal{H} \,|\, I)}{P(D \,|\, I)}$$



Machine Learning: Treino, Teste, Previsão e Ação

